
MICHAEL P. MCCUMBER 
LOS ALAMOS NATIONAL LABORATORY

LOSSY CALORIMETER TRUTH 
COMPRESSION VIA PHG4SHOWER

SPHENIX SIMULATIONS MEETING 
1/5/2016

PH ENIX

PULL REQUEST #101



Old Truth Ancestry



OLD TRUTH ANCESTRY
3

PHG4Particle



OLD TRUTH ANCESTRY
4

PHG4Particle

PHG4Particle
PHG4VtxPoint



OLD TRUTH ANCESTRY
5

PHG4Particle

PHG4Hit

PHG4Particle
PHG4VtxPoint



OLD TRUTH ANCESTRY
6

PHG4Particle

PHG4Hit PHG4CylinderCell

PHG4Particle
PHG4VtxPoint



OLD TRUTH ANCESTRY
7

PHG4Particle

PHG4Hit PHG4CylinderCell

RawTowerPHG4Particle
PHG4VtxPoint



OLD TRUTH ANCESTRY
8

PHG4Particle RawCluster

PHG4Hit PHG4CylinderCell

RawTowerPHG4Particle
PHG4VtxPoint

file size hogs

CaloRawClusterEval



New Truth Ancestry



NEW TRUTH ANCESTRY
10

PHG4Particle

PHG4Hit

PHG4Particle
PHG4VtxPoint



NEW TRUTH ANCESTRY
11

PHG4Particle

PHG4Hit

PHG4Particle
PHG4VtxPoint

PHG4Shower



NEW TRUTH ANCESTRY
12

PHG4Particle

PHG4Hit PHG4CylinderCell

PHG4Particle
PHG4VtxPoint

PHG4Shower



NEW TRUTH ANCESTRY
13

PHG4Particle

PHG4Hit PHG4CylinderCell

RawTowerPHG4Particle
PHG4VtxPoint

PHG4Shower



NEW TRUTH ANCESTRY
14

PHG4Particle RawCluster

PHG4Hit PHG4CylinderCell

RawTowerPHG4Particle
PHG4VtxPoint

PHG4Shower



NEW TRUTH ANCESTRY
15

PHG4Particle RawCluster

PHG4Hit PHG4CylinderCell

RawTowerPHG4Particle
PHG4VtxPoint

PHG4Shower

NB: SVTX secodaries, hits, cells, eval unchanged 

CaloRawClusterEval



PHG4SHOWER OBJECT
16

Showers are stored in PHG4TruthInfoContainer:



SHOWER CREATION
17

Shower objects are automatically created for all volumes and all PHG4HitContainers

PHG4TruthInfoTrackingAction::PreUserTrackingAction()

each primary input particle gets a shower object



SHOWER CREATION #2 18

PHG4TruthInfoTrackingAction::PostUserTrackingAction()

each secondary created is passed a pointer to the primary shower

(neat trick for passing information forward in GEANT)



SHOWER CREATION #3 19

PHG4*SteppingAction::SteppingAction()

hits are told which shower they belong to

showers are told which hits they contain



SHOWER CREATION #4 20

Showers are cycled to remove zero energy hits, and summarize characteristics

(example above shows energy weighted position PCA analysis)

PHG4TruthEventAction::EndOfEventAction(),PruneShowers(), ProcessShowers()



RAWTOWER MODIFICATION
21

RawTowerv1.h
dual interface functions for cells and showers 

(similar set of mods to Cell objects)



TYPICAL USER EVAL OBJECT CHANGES
22

CaloRawClusterEval.h

works with reduced DSTs

works with reduced DSTs or 
full DST (needs PHG4Hits)

cluster<=>particle interface unchanged, 
but uses shower storage for CPU benefits 
NB: there minor name changes to break 
shower/particle naming collisions



REDUCTION OF DST 23

Shower objects are automatically created for all volumes and all PHG4HitContainers 
but deletions are done manually for specified containers

PHG4DstCompressReco* compress = new PHG4DstCompressReco("PHG4DstCompressReco");

compress->AddHitContainer("G4HIT_CEMC_ELECTRONICS");

compress->AddHitContainer("G4HIT_CEMC");

compress->AddHitContainer("G4HIT_ABSORBER_CEMC");

compress->AddHitContainer("G4HIT_CEMC_SPT");

compress->AddHitContainer("G4HIT_ABSORBER_HCALIN");

compress->AddHitContainer("G4HIT_HCALIN");

compress->AddHitContainer("G4HIT_HCALIN_SPT");

compress->AddHitContainer("G4HIT_MAGNET");

compress->AddHitContainer("G4HIT_ABSORBER_HCALOUT");

compress->AddHitContainer("G4HIT_HCALOUT");

compress->AddHitContainer("G4HIT_BH_1");

compress->AddHitContainer("G4HIT_BH_FORWARD_PLUS");

compress->AddHitContainer("G4HIT_BH_FORWARD_NEG");

compress->AddCellContainer("G4CELL_CEMC");

compress->AddCellContainer("G4CELL_HCALIN");

compress->AddCellContainer("G4CELL_HCALOUT");

compress->AddTowerContainer("TOWER_SIM_CEMC");

compress->AddTowerContainer("TOWER_RAW_CEMC");

compress->AddTowerContainer("TOWER_CALIB_CEMC");

compress->AddTowerContainer("TOWER_SIM_HCALIN");

compress->AddTowerContainer("TOWER_RAW_HCALIN");

compress->AddTowerContainer("TOWER_CALIB_HCALIN");

compress->AddTowerContainer("TOWER_SIM_HCALOUT");

compress->AddTowerContainer("TOWER_RAW_HCALOUT");

compress->AddTowerContainer("TOWER_CALIB_HCALOUT");

se->registerSubsystem(compress);

So with this list, showers are 
created for the forward 
calorimeters and utilized by the 
evaluation, but not yet deleted. 

Secondary particles and 
vertexes are preserved by 
sweeping through all hit 
containers named “G4HIT_*” 
and preserving objects needed 
by non-designated objects. 
Thus, a forward tracker when 
implemented will preserve its 
truth information



DST SIZE PERFORMANCE
24

5 random Central HIJING 4-7 fm event with absorber hits

Without compression: 621MB / 5 events = 124 MB / event 
With shower compression: 17 MB / 5 events = 3.4 MB / event 

3.4 MB/event, a factor 37 better than full DST 

What dominates the DST file size after compression? 
19% SVTXSUPPORT G4Hits <= add to compression 
16% SVTX G4Hits 
14% PIPE G4Hits <= add this to compression 
13% PHG4Showers 
11% SimTowers 
10% PHG4Particles <= includes SVTXSUPPORT/PIPE secondaries 
7% GenEvent record 
6% Raw and Calib towers <= these could be regenerated 
4% PHG4Vertexes <= includes SVTXSUPPORT/PIPE secondaries 

A factor ~70 might be possible with some additional cleanup 



PROFILING MID-CENTRAL EVENTS
25

1 random mid-central HIJING 4-7 fm event, no absorber hits (memory limit on my laptop 
and my patience limit with callgrind). It includes shower generation, removal of redundant 
truth, full set of default evaluation, so tests both “reco" CPU and “analysis” CPU 

highlighted positions in following slides



PROFILING MID-CENTRAL EVENTS
26



PROFILING MID-CENTRAL EVENTS
27



PROFILING MID-CENTRAL EVENTS
28



PROFILING MID-CENTRAL EVENTS
29



PROFILING MID-CENTRAL EVENTS
30



PROFILING MID-CENTRAL EVENTS
31



PROFILING MID-CENTRAL EVENTS
32



SUMMARY
33

Changes are available in Pull Request #101. DST size performance and 
CPU performance are very encouraging. Most run-time errors are 
patched.


Implementation comments, criticisms are requested. How could this work 
differently?


I need feedback on what the DST format will look like: Do we write out 
empty nodes or remove them completely? so that I can fully test that read 
back


Jin wants sub-showers to manage radiative photons, these can be stored 
as redundant secondary showers. Map storage is ready for sub-shower 
storage. One option: write out every first generation sub shower. Other 
ideas are requested, but more complicated ideas need an implementation 
plan or at least a very specific algorithm for creation.



BACKUP SLIDES


